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Abbreviation 

 

NSE:  Nash–Sutcliffe efficiency 

R-squared:  Coefficient of determination 

MAPE:  Mean absolute percent error 

MSE:   Mean squared error 

MAE:  Mean absolute error 

IA:   Willmott’s Index of Agreement  

R:   Correlation coefficient  

MLP-NN: Multi-layer perceptron neural network 

 LSTM:  Long short-term memory neural network  

XGBoost: Extreme gradient boosting  

CV:   Coefficient of variation 

CART:  Classification and Regression Tree 
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Executive Summary 

This dissertation investigates next-day river flow forecasting using both traditional linear regression 

models and advanced machine learning techniques, applied to the Taff River at Pontypridd (station 

ID: 57005) and its seven active tributaries. For data collection GDF and CDR data were obtained from 

the National River Flow Archive and ranged from 2006-05-26 to 2017-12-31. Comprehensive data 

preprocessing measures encompassing data cleaning, de-seasonalisation, data transformation (log 

transformation and Box-Cox transformation), and stepwise selection (forward and Backward 

techniques) were employed to choose input variables to improve model performance. 

 

The study thus focuses on Linear Regression analysis (LR), Support Vector Regression (SVR), Neural 

Networks (NN), and Generalized Additive Models (GAM). The Random Search Cross-Validation 

method was used to tune the hyperparameters for the SVR model, and this change yielded considerable 

improvement. This study provided evidence that the SVR model, especially when fitted to Box-Cox 

transformed data, yielded lower prediction errors compared to other models in the three-evaluation 

metrics, namely, R-squared, MAE, and MAPE. This is an indication that the Neural Network model 

which performed well was not fully optimized and could be an area of further research. Improving the 

accuracy of the model could be done by fine-tuning the Neural Network or trying an ensemble of SVR 

and NN instead of the simple merging done in this dissertation. 

 

The study addresses a key research gap: comparison of simple linear regression idea with the most 

sophisticated machine learning algorithms in the context of river flow prediction. It notes that the use 

of non-linear models including the SVR offers better performance than the linear regression in 

determining the relationship in hydrological data. This project fills a gap in hydrological modelling by 

demonstrating the impact of data preprocessing and hyperparameter optimization on model 

performance. 

 

In conclusion, the presented work indicates that the application of the more sophisticated machine 

learning model, namely SVR, leads to river flow forecasting improvement in the Taff River catchment 

area. These results imply the need for careful attention to preprocessing and the choice of appropriate 

hyperparameters. 

Future research should focus on optimization of neural network and exploring ensemble learning 

techniques to combine strengths multiple models to enhance more accurate predictions in context of 

river flow forecasting. 
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1. Introduction 

Prediction of river level is important in water resource management, flood and droughts effects (Jamei 

et al., 2022). Accurate forecasts are even crucial for flood protection, water supply, and demand, as 

well as for preparation to the future hydrologic events (Granata and Di Nunno, 2023). With the 

advancement in technology, computational approaches have been enhanced enabling the usage of 

enhanced models embracing both rainfall and river flow in different evolving tributaries thus 

enhancing the perception of river systems. This has become more important as the extent of fluctuation 

in the river levels would determine the amount of water to be expected during floods. 

 

The Traditional techniques, especially, Linear Regression (LR) model, has been practiced for river 

level prediction. However, these approaches raise difficulties in identifying nonlinear dynamism, 

which is characteristic of river systems (Fernandes et al., 2023). The belief in linearity of the 

independent and dependent variable relationship reduces LR capability in addressing variable 

influencing factors like rainfall, land absorption and human activity. Advanced models are required 

because river systems involve multiple multifaceted dependencies between flow across gauges and 

temporal lags Machine learning (ML) models, by contrast, offer greater flexibility in handling non-

linear relationships and can better accommodate the multifactorial nature of river catchments (Zakaria 

et al., 2023). 

 

However, it became apparent that traditional models have their drawbacks and are widely used despite 

that. Since LR fails to consider nonlinear relationship, the major issues are in computation of river 

levels especially in conditions of changes in rainfall regime and water supply from artificial reservoirs 

(Zhang et al., 2018). Therefore, the use of higher order models including Support Vector Regression 

(SVR), Neural Network (NN) and Generalised Additive Models (GAM) is considered to be the 

solution. These models can integrate spatial and temporal information of gauges providers in the 

catchment areas and gives more detail about the rainfall events and river responses (Kedam et al., 

2024). The staffers ensure that the models are fed with data from various tributaries, filling gaps left 

behind by traditional approaches of modelling. 

 

 

The focus of this study is on developing and testing models to predict next-day river levels by using 

both traditional and ML approaches. The analysis includes data from the National River Flow Archive, 

specifically focusing on the River Taff catchment area and its tributaries. By combining historical river 
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flow and rainfall data, this study aims to improve the accuracy of predictions. The comparison of LR 

with ML models highlights the latter’s ability to capture complex, non-linear relationships between 

rainfall and river levels. 

 

 

One of the main challenges in river level forecasting is improving prediction accuracy to ensure 

effective flood management and water resource allocation. This research aims at identifying the 

challenges of the Traditional models and examining the possibilities of the sophisticated methods ML 

techniques for increasing the credibility of prediction. The findings will inform future strategies for 

more efficient management of water resources, especially in areas susceptible to flooding, will be 

informed by the findings, the Research aims at closing the gap between Traditional and ML models, 

which is useful in improving the level of accuracy of river level forecasting following changes in 

environmental factors. 
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2. Literature Review 

2.1. Importance of daily river level forecasting 

River level forecasting is significant for water resource planning, flood control and irrigation planning 

on the daily basis. It helps in the protection of human life, reduction of risks in the occurrence of 

adverse weather conditions and proper management and distribution of water. (Granata and Di Nunno, 

2023) state that accurate prediction of the river flow is significant in different fields including 

agriculture and hydropower to mitigate the impacts of floods or droughts that lead to revenue losses 

and threats to aquatic life. 

 

To give early warnings and take further preventive measures, it is essential to make a proper forecast 

amidst flood management, especially in regions where there is no integrated flood warning system for 

heavy rainfall, (Jamei et al., 2022). Even though higher accuracy in river flow prediction is achieved 

by machine learning models mainly due to their non-linear nature and flexibility in incorporating 

changes in conditions (Zakaria et al., 2023), it is still a challenge to forecast river level daily, especially 

in regions with complex hydrological environments. 

 

Although, plenty of improvements have been made in the case of the forecasting methods, there is no 

daily forecast of river level for Taff River and its branches in Cardiff and Pontypridd area. Currently, 

services such as the Met Office and Natural Resources of Wales provide flood risk advisories that 

provide up to five days’ prognosis but refrain from individual and daily river level prognosis. 

 

 

The Objective of this research aims to address this gap by carrying out a modelling approach on daily 

river levels of the Taff River and its tributaries with the aid of machine learning algorithms. This study 

also employed historical flow and rainfall data with intention of developing, validating and comparing 

the model result which may lead to a better and specific next day ahead river level forecasting tool to 

support flood mitigation and water resources management in the area. An application of machine 

learning models like Support Vector Regression, Generalised additive Model and neural networks in 

such systems as here proposed should go a long way in enhancing the accuracy of these forecasts and 

be revealed as an extremely useful addition. 
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2.2. Data Acquisition and Data Preprocessing practice for river level forecasting 

Many recent research on river flow to accurate forecasting have been based strongly on the following 

aspects: Efficient data gathering, cleaning, and preprocessing. (Kedam et al., 2024) claimed the 

significance of accruing data from more than one station over a long-time span, saying that large 

datasets are prerequisite for the setup of accurate predictive models, in his study, they have used 

handled missing values and outliers and more attention on the features scaling like standard Scaler and 

some cognizance of non-stationary and non-linear contact points in the data. In the same way, 

(Serrano-López et al., 2024) also concerned with the river flow and collected height data from different 

sources, they were more careful about the quality of data and made it suitable for modelling and filling 

of missing value by KNN regressor for large gaps and interpolation for small gaps in this study also 

outlier was handled by using moving average with window size of 25. 

 

However, these studies highlight the need to devote more time to data collection and analysis in areas 

of interest, especially concerning the daily river level prediction of the Taff River and its tributaries. 

Existing solutions lack optimal solution to address issues of fusion and preprocessing of datasets for 

focusing localized daily predictions. 

 

This dissertation aims to estimate daily river level of the Taff River and its major tributaries with the 

help of a large set of data from several gauges. Using such data preprocessing techniques as detection 

and handling of outliers, handling missing data, features scaling with MinMax Scaler, this research 

seeks to enhance the accuracy of the localized predictions with the view of providing a more local 

specific management on water resource and flood risk. 

 

Concerning missing data, both (Serrano-López et al., 2024) and (Zakaria et al., 2023) applied 

imputation methods to deal with missing values in the datasets. However, more detailed techniques to 

resolve the areas of the catchment and therefore adaptation of the models for daily forecasting seem to 

be required. These techniques are used in this research with emphasis on retaining inter-conversion 

consistency of data measured on different gauges, which is important in generating daily prediction. 

Also addressed the procedure of handling missing values after the integration of multiple gauges. 

 

Concerning outliers, (Kedam et al., 2024) utilized StandardScaler for balanced scaling while 

(Tawakuli et al., 2024) employed Grubbs’ test and Interquartile Range methods. Although these 

methods work well, their use is not very beneficial in short-term forecasts for individual subordinate 
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rivers such as the Taff. This research enhances these methods and fine-tunes them to suit hydrologic 

conditions of the Taff River basin to guarantee that data input to the model is credible. 

 

2.3. Input Variable Selection for Lagged Data River Level Forecasting 

Variable selection is vital in establishing suitable models for river flows predictions especially if one 

is working with data shifted across several days. (Akbarian, Saghafian and Golian, 2023) underlined 

the significance of reducing the dimensionality by addressing the issue of managing a large set of 

potential predictors especially in monthly streamflow forecasting. but they also highlighted some 

disadvantages including the fact that it is very prone to overfitting especially when the size of data is 

small and the fact that it takes a very long time to manage so many variables. To address these 

problems, their work used Pearson correlation analysis (PCA) and Recursive Feature Elimination 

(RFE) to reduce the dimensionally of input matrix by removing the predictors with high collinearity 

and low selection importance. Despite these challenges, the approach sought to strike a fine line 

between the model’s complexity and accuracy when making the predictions though the issue of 

overfitting arose especially when not well addressed. 

 

(Hussain and Khan, 2020) also stressed the significance of selecting appropriate predictors in the study 

of monthly river flow prediction. To identify appropriate lagged values for the river flow data, they 

utilized ACF and PACF and incorporated the appropriate lags into their model inputs. It is essential to 

apply this process to reveal the temporal dependencies of the data to enhance the model’s capacity to 

predict future river flows. 

 

(Lian et al., 2021) study selected chosen optimal lag with the help of PACF function and was more 

inclined towards the application of PCA method to analyse and reduce the input variables to their most 

fundamental form that can provide accurate forecast. In their study on multi-day-ahead streamflow 

forecasting they used PCA to reduce dimensionality of the input space and observed the gains and 

reduction in risks of overfitting. When PCA was combined with other sophisticated models like the 

LSTM, the predictive capability was improved by emphasizing on the considerably relevant features 

of the data. 

 

While these studies effectively address feature selection for lagged data, there is limited research 

focused on stepwise selection algorithm to select better input variables for number of lagged days to 

daily river level forecasting.  
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The purpose of this study is to determine by applying these feature selection techniques, including 

ACF/PACF analysis and stepwise selection techniques, to daily river level forecasting. By focusing 

on the Taff River and its tributaries, the integration of these feature selection methods with Linear 

regression model and advanced models such as Generalized Additive Models (GAM) and Support 

Vector Regression (SVR), Neural Network and compared result among these models. 

 

2.4. Method of Model building and Evaluation in Daily River Forecasting 

Different research has also shown that integration of other ML algorithms such as SVR, ANN, RF and 

XGBoost with meta-heuristic optimization algorithms improves accuracy of the forecast of river flow 

as well as the stability of the models. 

 

2.4.1. Support Vector Regression (SVR) Applications 

(Nguyen, Huu and Li, 2015) used the Support Vector Regression (SVR) to predict changes in the water 

level of Mekong River, a comparison of the accuracy of the model offered by LASSO and Random 

Forest. It also found out that SVR was able to capture non-linear relationship better than other models 

in terms of RMSE and MAE. (Malik et al., 2020) have enhanced SVR with gamma test (GT) for the 

selection of variables and applied meta-heuristic algorithms namely Harris Hawks Optimization 

(HHO), Bayesian Optimization (BO), Multi-verse Optimizer (MVO), Ant Lion Optimization (ALO), 

Spotted Hyena Optimizer (SHO) and Particle Swarm Optimization (PSO). These hybrid models were 

evaluated using RMSE, Scatter Index (SI), Coefficient of Correlation (COC), Willmott Index (WI) 

and graphically, with the SVR-HHO model demonstrating superior performance in daily streamflow 

prediction. 

 

2.4.2. Linear Regression Models in river flow Forecasting 

Numerous researchers have investigated the utilization of linear regression models, frequently as a 

reference point for evaluating more advanced machine learning (ML) models. In the different Iranian 

basins studies of streamflow forecasting, (Akbarian, Saghafian and Golian, 2023) used Multiple Linear 

Regression (MLR). However, while employing the MLR is very easy due to its clear interpretable 

structure, the model often fails when comparing it with non-linear models like Artificial Neural 

Networks (ANN), Random Forest (RF), or XGBoost. To demonstrate that the chosen nonlinear models 

more accurately predict the results compared to the MLR model, the evaluation criteria such as NSE, 

NRMSE, and KGE were used in the study. This trend was particularly apparent in the regions with 
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complex hydrological parameters, and which could not be properly described by the linear MLR 

model. 

 

2.4.3. Hybrid Machine Learning model in river flow Forecasting 

In the recent past, there are number of key developments in use of ML models for river flow prediction 

as concerns enhance accuracy of predictions and handling of non-linear characteristics of water data. 

In the present paper, a model integration of CatBoost with Genetic Algorithm (GA) has been done to 

predict daily    river flow in Sakarya Basin of Turkey using univariate time series data by (Kilinc et 

al., 2023). This model outperformed the basic models which includes LSTM & Linear Regression 

while comparing the RMSE & R² values. Similarly, in (Cui et al., 2020), the authors proposed the 

Emotional Neural Network (ENN) to predict the hourly river flow for Mary River, Australia and its 

performance was found better than the models such as Minimax Probability Machine Regression 

(MPMR), Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Splines (MARS). 

Variables chosen by the PACF function as the input were very encouraging since ENN can capture the 

subtle and non-linear relationship between the data in real-time hydrological forecasting. In these 

studies, the authors emphasize the need to combine machine learning with optimization algorithms to 

improve the river flow estimations and their reliability. 

 

(Jamei et al., 2022) studied the flood forecast ability using time-varying filter-based empirical mode 

decomposition (TVF-EMD) in combination with CART and Machine learning models such as LSTM, 

CFNN, MARS and GBDT of Australia's Clarence River. According to evaluation criteria of R, MAPE, 

KGE, RMSE and NSE, they pointed out that CART-TVF-EMD-CFNN model had a better 

performance over others in Short-term prediction, hence they clearly indicated that there is a limitation 

with highly non-stationary data using LSTM. 

 

In a similar vein, (Zakaria et al., 2023) evaluated MLP-NN, LSTM, and XGBoost for the use of 

forecasting in the Muda River of Malaysia. Based on RMSE, MAE, MAPE, and R², the most accurate 

model was MLP-NN, while LSTM offered superior long-term forecasting. While XGBoost proved 

efficient with the least time, its accuracy was the lowest among all the classifiers used. These studies 

demonstrate the need for careful selection of the right models and evaluation metrics in water level 

forecasting. 

 

 

 



14 
 

2.4.4. Other models investigated against Linear Regression Model for river flow forecasting 

(Tsakiri, Marsellos and Kapetanakis, 2018) introduced a hybrid model combining Artificial Neural 

Networks (ANN) and Multiple Linear Regression (MLR) for flood prediction in the Mohawk River, 

New York. Author’s study shown robustness of ANN and assessed the effectiveness of MLR. The 

study found that ANN models applied to decomposed time series outperformed MLR in predictive 

accuracy, especially in capturing non-linear relationships. The use of time series decomposition was 

critical in improving the model's performance, as evidenced by better R-Squared and MSE. 

 

(Latt and Wittenberg, 2014) employed Stepwise Multiple Linear Regression (SMLR) and Artificial 

Neural Networks (ANN) to analysed flood forecasting in Myanmar’s Chindwin River. Based on ACF, 

PACF, cross correlations CCF, and stepwise selection for input variables, they noted that ANN was 

marginally superior to SMLR and had higher R², lower RMSE, MAPE, and CV for extreme floods. 

Likewise, (Chieu et al., 2024) demonstrated that the Kien Giang River’s water level can also be 

predicted by models such as LR and SVR. Thus, the analysis found that on R², NSE, and RMSE, the 

LR model outperformed more complex models, which were overfitting, because the LR model was 

able to correctly estimate the linear response of water levels to rainfall. 

 

Despite these developments in the studies, there are still limitations on the different comparison of 

linear regression with the popular machine learning models under different hydrological conditions. 

The present work addresses those gaps with the use of traditional and machine models, applying 

stepwise selection and hyperparameter tuning for the prediction of next day river levels using metrics 

such as, MAPE, MAE, MSE and R². 
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3. Methodology 

3.1. Data collection and initial geographical setup 

Data was collected for this study from National River flow archive which maintained by UK Centre 

for Ecology & Hydrology where Measuring authority at each gauge Natural Resources Wales. Focused 

on Gauged Daily flow (GDF) and catchment daily rainfall (CDR) data across Multiple gauges. The 

primary gauge station utilized for next-day river flow forecasting was the Taff at Pontypridd (station 

57005). In addition, data were collected from seven tributary gauge stations within the catchment, 

including Taf Fechan at Taf Fechan Reservoir (station 57001), Taf Fawr at Llwynon Reservoir (station 

57002), Taff at Merthyr Tydfil (station 57015), Taff at Fiddlers Elbow (station 57007), Cynon at 

Abercynon (station 57004), Rhondda at Trehafod (station 57006), and Rhondda Fawr at Tynewydd 

(station 57017) as depicted in Figure 1.0 (page 17). Daily flow at gauges was measured in m3/s and 

daily rainfall measured in mm. Discharge data were measured in cubic meters per second (m³/s) for 

the daily flow at these stations while precipitation data were taken in millimeters (mm) for the daily 

rainfall. 

 

           

     Figure:1.0, gauges used for river flow forecasting (National River Flow Archive, no date) 
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The catchment areas corresponding to each gauge station are as follows: 

57005-Taff at Pontypridd: 454.8 km² 

57006-Rhondda at Trehafod: 100.5 km² 

57017-Rhondda Fawr at Tynewydd: 16.6 km² 

57004-Cynon at Abercynon: 106 km² 

57007-Taff at Fiddlers Elbow: 194.5 km² 

57015-Taff at Merthyr Tydfil: 104.1 km² 

57002-Taf Fawr at Llwynon Reservoir: 43 km² 

57001-Taf Fechan at Taf Fechan Reservoir: 33.7 km² 

 

The dataset was initially read into a Python environment, whereby the GDF and CDR data sets were 

combined into one continuous data frame for each gauge station separately. This was necessary to 

bring the data in datasets into a realm of homogeneity to enable subsequent processes such as cleaning 

and analysis. 

 

3.2 Data Preparation and Cleaning 

The data cleaning and data pre-processing phases were critical to the assessment of quality and 

usability of the datasets in the current study that sought to build robust river flow forecasting models.  

The measures taken are outlined below: 

 

3.2.1 Data formatting of daily flow and rainfall dataset 

Upon initial inspection of the original datasets, it was noted that there were metadata entries in Gauged 

Daily Flow (GDF) and Catchment Daily Rainfall (CDR) dataset that needed to be eliminated. To 

counter this, the data was restructured for each gauge. In more detail, extracting data from both the 

GDF and the CDR dataset involved selecting information only from the 19th row down to the first and 

second columns, where the date and measurement values were indicated. The date was started in the 

first column, whereas the second column was used to store the GDF or CDR values. This reformatting 

procedure was systematically performed on all the eight gauges, and each gauge’s dataset was stored 

separately in a dataframe for further analysis. 
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3.2.2 Data merging of daily flow and rainfall data at each gauge 

The next stage involved merging the two distinct DataFrames—one containing daily flow data and the 

other daily rainfall data—into a single cohesive dataframe for each gauge. An 'inner join' method was 

employed, using the date as the common key, to ensure that only matched dates between the two 

datasets were retained (author, year). Such an approach was necessary to eliminate the inclusion of 

missing values within the GDF or CDR columns. Subsequently, type conversions were made for the 

purpose of transforming the ‘date’ column into a datetime format and the ‘gdf’ and ‘cdr’ columns into 

floats. Further, a new column termed as ‘gauge’ was included in each of the DataFrames, which 

captured the unique station identification number of the location (for instance, 57005 for Taff at 

Pontypridd). This was done to ensure that the dataset was of equal quality across all the gauges before 

proceeding with the next steps in the analysis 

 

3.2.3 Numerical Summary of each gauge after gdf and cdr data merge 

After performing the above steps of data merging, a statistical summary was obtained for each gauge 

to gain a general perspective on the data. Results of this summary provided the count, mean, std for 

GDF values and count and mean, std for CDR values. Table (1.0) present numerical summary of each 

gauge which helped to identify data consistency and anomalies. 

   

   GDF CDR 

Gauge Data count mean std Data count mean std 

57005 17259 20.720056 27.358210 17259 5.344696 9.331123 

57006 16955 5.899018 7.739532 17259 6.443687 11.302441 

57017 731 1.156085 1.306841 731 6.830369 10.990441 

57004 21642 4.409308 6.155301 22007 5.257218 9.460269 

57007 16316 6.989491 9.668518 16316 4.931907 8.544934 

57015 14337 3.796097 6.116896 14337 5.402260 9.210841 

57002 25821 1.098884 1.852487 31503 5.482570 9.406618 

57001 22777 0.799590 1.528575 29645 5.489664 9.382976 
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3.2.4 Inspection of Missing values and Data Redundancy after data merging 

In analysing merged data frames, the first step done was a check for missing values and duplicate data. 

Table 2.0 below depict, the number of missing values as well as the cases of duplicated data among 

the gauges. The inspection also pointed that certain feature like gauges 57006, 57004, 57002 and 57001 

were having missing values which need to be handle properly for the best management of the dataset. 

 

 

Gauge id: 57005 57006 57017 57004 57007 57015 57002 57001 

GDF Missing values 0 304 0 365 0 0 5682 6868 

Redundancy 0 0 0 0 0 0 0 0 

CDR Missing values 0 0 0 0 0 0 0 0 

Redundancy 0 0 0 0 0 0 0 0 

 

  

3.2.5 Handling Missing Values  

 

3.2.5.1 Exclusion of Gauge with Insufficient Data 

After analysing the missing data patterns of all the gauges as shown above. The analysis also showed 

that there were huge disparities in the availability of the Gauged Daily Flow (GDF) data at various 

gauges. These gaps were represented on time series plots, thus making it easier to understand when 

data was missing (Figures:2.1-2.8, page:29-21). This was noticed because there existed long gaps in 

the data owing to events that have included reconstruction work and main gap highlighted in the 

metadata of the given data set. Based on these gaps as well as realizing that eliminating one gauge 

could greatly affect the results a decision was made to eliminate gauge 57017 which had data for only 

two years. If this gauge was included the sample size of the other gauges would have been reduced 

enormously thus reducing the overall robustness and reliability of the model in the study. 
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               Figure:2.1  
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              Figure:2.3 
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             Figure:2.4 

 

               Figure:2.5 

 

 

                                                                      Figure:2.6 
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      Figure:2.7 

 

 

              Figure:2.8 

 

3.2.5.2 Alignment of Dataset Time Frames 

As seen in (Figure:3.0, Page:22), it was clear that missing values were a common occurrence for most 

of the gauges to account for missing data for the purpose of achieving consistent data across the gauges, 

with the observation of (Figure:3.0, Page:22), gauge 57002 was used and the dataset was brought to 

standard by realigning the other gauges with data from this gauge. In selection of data for the study, 

data was chosen from 2006-05-26 to 2017-12-31 because data on rainfall for the subsequent dates was 

unavailable. This was achieved by bringing all datasets from the different gauges into this timeframe 

thus making sure that the final dataset was complete for analysis. 
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     Figure:3.0 

3.2.5.3 Imputation of Remaining Missing Values 

After the alignment, only six missing values were found in the gauge 57002 GDF dataset. The steps 

that were taken to address missing values were the forward fill and backward fill method (author, year). 

The forward fill method was used because it ensured that there was no interruption in the data by using 

the last recorded values to carry forward, which proves especially helpful when it comes to sequences 

that have some missing data. Another technique also known as backward- fill was also used where 

missing values were filled by subsequent values. These methods were chosen because they provide a 

direct way of preserving important formats of the time series when extracting without forcing 

modification of sets to follow a certain sequence. 

 

At this stage, all eight gauges datasets were in the individual data frames where each data frame 

comprised of the date, CDR, GDF, and the gauge number. This structured organization of the data 

helps in replicability of the data cleaning process and assists in analysis. 
 

3.2.6 Inspection of Outlier and Nature of data 

To first evaluate for any possible outliers in the Gauged Daily Flow (GDF) and Catchment Daily 

Rainfall (CDR) data of the selected gauges, box plots were employed, as described below in 

(Figures:4.1-4.7, page23-25). When analysing the data given by the box plots, it was clear that the 

distribution of both GDF and CDR values was right skewed, and there were many highly influential 
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observations, which lay outside the interquartile level. These extreme values, although highlighted as 

outliers by the box plots (author, year), probably include important hydrological events including 

floods or heavy rainfall and are not necessarily because of error or anomalous circumstances. Since all 

the gauges exhibited right skewness, the following steps were taken to perform additional measures 

by creating distribution plots and data transformation. 

 

    

     Figure:4.1                                                          

 

 

                           Figure:4.2 
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Figure:4.3                                                         

 

     Figure:4.4  

 

 

     Figure:4.5     
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     Figure:4.6 

 

 

      Figure:4.7 

  

 

3.2.7 Combined all dataset in single dataframe 

To carry out further analyses and for the purpose of efficient computation, each of the gauges’ data set 

was merged into one final data frame. This process excluded Gauge 57017 given that it only had 

limited data to offer which, in effect, might have well skewed the results. 

 

Two approaches were considered for this consolidation: 

Direct Merge by 'Date': This method would have involved merging datasets on the date column, 

producing a dataframe with a substantial increase in rows, thus extending processing times. 
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Optimized Column Renaming and Merging: To mitigate the computational burden, each dataset’s cdr 

and gdf columns were renamed to include their respective gauge identifiers. The gauge column was 

then omitted from each data set followed by merging the DataFrames using the inner join where the 

‘date’ was the key column used in merging. This approach resulted in lowering several rows and 

facilitated the management of data. 

 

This gave a merged dataframe as the final output with the data being processed without any duplicity 

thus making the processing time efficient. (Figure:5.1, Page 27) below shows the final dataframe 

structure that was important for the subsequent Exploratory Data Analysis (EDA) or model building. 

 

 

 

      Figure:5.1 

 

3.3 Exploratory Data Analysis 

The Exploratory Data Analysis (EDA) phase was conducted to gain a deeper understanding of the 

relationships and patterns present within the dataset, which comprises Gauged Daily Flow (GDF) and 

Catchment Daily Rainfall (CDR) across multiple gauges. This analysis aimed to uncover the 

underlying structure of the data, identify relation between flow, rainfalls, distribution patterns, identify 

significant trends, and assess the correlations between various hydrological variables. 
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3.3.1 Relation of daily flow and daily rainfall at various gauges 

Scatter plots were used to analyse the relationship between Gauged Daily Flow (GDF) and Catchment 

Daily Rainfall (CDR) for various gauge stations. The objective of this study was to assess cases of any 

discernible relationship or trends that reflect the dependence of the flow of the river within the 

catchment area on rainfall. 

 

(Figures:6.1-6.7, Page:28-34) presents the scatter plots of the daily rainfall that was recorded at each 

gauge and the river flows. Generally, higher rainfall was associated with increased river flow, although 

the relationship exhibited considerable variability, particularly at higher rainfall levels. This non-linear 

relationship indicates that other hydrological processes are at work in the system including runoff 

production, rate of water infiltration into the soil, and effects of the tributaries upstream. 

 

The scatter plots also helped identify that one particular gauge demonstrated a much tighter relation 

between the rainfall and the river flow, while other gauges same type of more scattered relationship. 

This variability may suggest that there are differences in the extents to which different parts of the 

catchment are reliant on rainfall. 
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     Figure:6.1 
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     Figure:6.2 
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     Figure:6.3 
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     Figure:6.4 
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     Figure:6.5 
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               Figure:6.6 
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     Figure:6.7 
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3.3.2 Relation between daily flow vs Daily across various gauge 

To analyse the relationship between daily flow measurements of the several gauges within the 

catchment, a pair plot was developed with the aim of analysing the relationships of daily flow 

measurements between different gauges. The pair plot is shown in (Figure:7.1, Page:36). 

 

The scatter plots within the pair plot matrix also show varying degrees of correlation between the 

measures. Notably: 

 

 Gauge 57005 and gauge 57004 are almost perfectly linear, which means that there is a direct 

positive relationship between them. This implies that these two gauges with Gauge 57005 being 

the principal river where next-day flow will be forecasted, and Gauge 57004 as a substream, 

feel the same hydrological conditions. This relation was important for the forecasting model 

because it assumed that Gauge 57004 contained substantial predictive information for Gauge 

57005.  

 

 As it is also elucidated through Gauge 57007 plot with Gauge 57005 and Gauge 57004, there 

is a nearly direct correlation between them. Since Gauge 57007 is another tributary, this goes 

well with the logical assembly of the flow dynamics in this catchment area. 

 

 A similarly positive and approximately linear relationship is also present when comparing 

Gauge 57015 to Gauge 57007. This suggests that another tributary Gauge 57015 also have 

similar flow regime as Gauge 57007 and may be important in analysing the total impacts of the 

tributary flows on the main river. 
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     figure 7.1 
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3.3.3 Correlation Analysis between daily flow and daily Rainfall 

To analyse the strength of the correlation between GDF (flow) and CDR (rainfall) over the chosen 

gauges, a heatmap was created with more emphasis placed on those gauges that are significant in the 

prediction of the next day’s river flow at gauge 57005 (gdf_57005). The heatmap depicts the 

correlation coefficients where the values are between 0 and 1, with values nearer to 1 representing a 

strong positive correlation and values nearer to 0 representing a strong weaker correlation. 

 

As presented in the (Figure:8.1, page:37), several key correlations were observed: 

 gdf_57005 shows that it is highly correlated to other flow gauges: gdf_57004, gdf_57006, 

gdf_57007, and gdf_57015. This suggests that flow at these tributaries tends to be involved in 

the determination of the flow at the main river gauge (57005). 

 Moreover, gdf_57001 and gdf_57002 had significant correlations with gdf_57005, but the 

coefficients were slightly lower compared to the above-mentioned gauges. 

 Correlations between CDR (rainfall) and GDF (flow) were comparatively lower, indicating 

that although rainfall is a useful parameter, the flow relationships between the gauges have a 

greater influence and potential in predicting river flow at 57005 with better precision. 

 

 

           Figure:8.1 
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3.3.4 Distribution Analysis of Daily flow and Rainfall at Each gauge 

To examine the distribution of Gauged Daily Flow (GDF) and Catchment Daily Rainfall (CDR) over 

all the gauges, the Kernel Density Estimation (KDE) plots were created as presented in (Figures:9.1-

9.7, page:39-41). Based on KDE plots provided below, based on KDE plots provided below, GDF and 

CDR have right skewed characteristics across all the gauges, which agrees with findings from the 

previous outlier analysis interpreted via box plots. 

 

This skewness is evidence of the influence of rare hydrological occurrence including high rainfall and 

flows in the rivers. This skewed nature of these distributions served to strengthen the argument for 

data transformation techniques such as log or Box-Cox transformations, which improve the efficiency 

of existing models for prediction. 

 

However, it was imperative to understand that the distribution of gdf_57002 was skewed from the 

other gauges. As for the other gauges, their distribution looked as if it has a long tail on the high flow 

side whereas gdf_57002 was significantly fewer high values and a very tight cluster around the low 

flow values. This pattern indicated that the observed flow characteristics at gauge 57002 might be 

related to different hydrological conditions or, possibly, to localized factors which was different from 

the conditions affecting the rest of the gauges and should probably be investigated during the modelling 

phase. 

 

The CDR frequency distributions reveal a high percentage of low rainfall days specifically, near zero 

which was characteristic for temperate climate regions that experience many dry days. The same can 

be said for the GDF distributions, which also show a high frequency of low flows values and a lesser 

number of near high flows suggesting that, as with most rivers, most days was generally characterized 

by normal, low flows with high flows being infrequent events. 
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     Figure:9.1 

 

 

     Figure:9.2 

 

 

         Figure:9.3 
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        Figure:9.4 

 

 

     Figure:9.5 

 

 

     Figure:9.6 
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     Figure:9.7 

 

 

3.4 Data Transformation 

As a result of skewness in the distribution of GDF and CDR the data was transformed to improve 

normality as this is often necessary for many statistical models. 

 

3. 4. 1 Log Transformation 

The first technique with which Log Transformation was employed. For GDF, the transformation was 

done using the log (x) tool, that is log to the base 10. As for CDR, the data contained zero values, so a 

small constant was added to the values followed by transformation log(1+x). This was done with intent 

to minimize right skewness of data which is crucial for model such as Linear Regression. 

 

This is illustrated in (Figure:10.1-10.7, page:42-44) where application of log transformation has 

generally led to reduction in right skewness and made the distributions more normal. This adjustment 

is necessary since a lot of predictive models work better when the input data has a normal distribution. 
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Figure:10.1 

 

 

       Figure:10.2 

 

 

      Figure:10.3 
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Figure:10.4 

 

        

 

      Figure:10.5 

 

 

       Figure:10.6 
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          Figure:10.7 

 

 

3.4.2 Box-Cox Transformation 

Besides log transformation, the Box-Cox transformation was applied to the cleaned data to stabilize 

variance and achieve a more normal distribution, particularly for non-negative data. It is defined as: 

𝑦(λ) = 𝑦(𝜆) =
௬ഊିଵ

ఒ
, 𝑓𝑜𝑟 𝜆 ≠ 0                            

 λ: parameter that determines the nature of the transformation. When λ=0, the transformation becomes 

equivalent to the natural logarithm. 

 

The Box-Cox transformation offers flexibility by adjusting λ to shape the data distribution. The goal 

of applying these transformations was to make the data more normally distributed, enhancing the 

reliability of statistical models. Distribution plots in (Figures:11.1-11.7, page:45-47) show significant 

improvement in GDF symmetry across gauges 57005, 57006, 57004, and 57007. 

 

Although the Box-Cox transformation improved the shape of the CDR distributions, it did not entirely 

eliminate the skewness, though it made it less pronounced. This step was crucial for improving the 

suitability of the data for statistical analysis. 

Box plots created after the Box-Cox transformation (Figures:12.1-12.7, page:47-49) further illustrate 

the reduction in outliers and the shrinking of whiskers, highlighting the mitigation of extreme values. 
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     Figure:11.1 

 

 

     Figure:11.2 

 

 

     Figure:11.3 
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     Figure:11.4 

 

 

    Figure:11.5 

 

 

         Figure:11.6 
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           Figure:11.7 

 

      

      

     Figure:12.1 
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     Figure:12.2 

 

    Figure:12.3 

 

    Figure:12.4 

 

 



49 
 

     Figure:12.5 

 

     Figure:12.6 

 

 

     Figure:12.7 

 

 

3.5 Variance and Mean Analysis 

To assess the changes that these transformations bring into the temporal character of the data, a 

comparative analysis of variance and mean was conducted before and after the log transformation. 

CDR and GDF data were calculated as variance and mean for the 30-day window, for each gauge 

though with more emphasis on gauge 57005 in (figures:13.1-13.4, page:50-51). 

Before Log Transformation: The mean level had less fluctuations and remained consistently low 

during high and low flow rates while the variance which demonstrated fluctuations depicted high 
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variances, especially during high flow periods. Such a difference pointed to the fact that the original 

variable was heteroscedastic. 

After Log Transformation: The variance was reduced in the variation stability sense, which implied 

a decrease in the peaks identified in the intensity contours. Mean became closer to variance especially 

in the transformed data implying that the structure was more homoscedastic. Such alignment was 

crucial in enhancing the efficiency and reliability of forecasting models. 

 

These transformations have not only helped in making normality of the data distributions more 

appropriate but also, they have been utilized in stabilizing variance to make the data more appropriate 

for the following model building stage. 

 

 

 

     Figure:13.1 

 

 

     Figure:13.2 
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      Figure:13.3 

 

      Figure:13.4 

 

 

 

3.6 Moving Average to find underlying trend in data 

The moving average (MA) technique is one of the most basic methodological approaches in time series 

analysis, which is used to average out short-term fluctuations to make long-term trends more visible. 

In this analysis, four types of moving averages were used on the log transformed river flow data for 

multiple gauges: 7 MA, Double 7 MA, 30 MA, and Weighted MA. All these methods help to eliminate 

noise with longer periods like the 30 MA able to smooth out more of the noise and thus enable one to 

capture the trend. 

From the moving average plots of each gauge (Figures:14.1-14.14, Page:52-56), no long period 

increasing or decreasing trends were observed in the river flow data. 
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      Figure:14.1 

 

 

      Figure:14.2 

 

 

      Figure:14.3 
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      Figure:14.4 

 

      Figure:14.5 

 

 

      Figure:14.6 
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      Figure:14.7 

 

      Figure:14.8 

 

 

      Figure:14.9 
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      figure:14.10 

 

      Figure:14.11 

 

 

      Figure:14.12 
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      Figure:14.13 

 

      Figure:14.14 

 

 

 

3.7 Time Series Decomposition to find seasonality or trend (STL Decomposition) 

From the obtained series of river flow and area rainfall, Seasonal-Trend Decomposition using LOESS 

(STL) was used to decompose the data to reveal the underlying cyclic behaviour. STL allows for the 

decomposition of a time series into three components: trend, seasonality, and residuals with the 

seasonality was set at 31 days to cover months. This decomposition was done on the log-transformed 

data. 

 

(Figures:15.1-15.14, page:57-59) presented the STL decomposition of each gauge, The seasonal 

constituents present regular cycles over years which indicate the variation that recurs each year That 

is, there are strong indications of seasonality. 
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Furthermore, to visually examine the pattern of the last three years the seasonal plots were created 

(Figures:16.1-16.14, page:59-64). These plots also show the reliability of seasonality, particularly, the 

low flow was observed around the month between April to September and high flow was around 

November to February. 

 

     

  Figure:15.1                                                                           figure:15.2 

 

      

  Figure:15.3       Figure:15.4 
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  Figure:15.5                                                             Figure:15.6 

 

       

   Figure:15.7      Figure:15.8 

   

  Figure:15.9        Figure:15.10 
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  Figure:15.11      Figure:15.12 

 

  

  Figure:15.13      Figure:15.14 

 

 

           Figure:16.1 
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           Figure:16.5 
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           Figure:16.8 
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           Figure:16.11 
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           Figure:16.14 

 

3.8 Autocorrelation Function and Partial Autocorrelation Function 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) (figures:17.1-17.14, 

page:64-69) were created for both rainfall and daily flow data post logarithm transformation. As 

evidenced from the ACF plots below, autocorrelation is still present at various lags and therefore, it is 

difficult to select an appropriate number of lags simply based on ACF. However, from the PACF plots 

more clarity is observed in the number of peaks and the number of significant spikes was observed up 

to 4 lags in the rainfall Data set.  The PACF for daily flow data provides different significant lags for 

different gauges up to lag 5th only. While some plots can experience negative spikes because of the 

influence of negative values coming from the log transformation step if the original data include near-

zero values. 

 

 
              Figure:17.1 
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       Figure:17.2 
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       Figure:17.4 
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       Figure:17.5 
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       Figure:17.7 
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       Figure:17.8 
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      Figure:17.10 
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     Figure:17.11 

 

 
     Figure:17.12 

 
       Figure:17.13 
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       Figure:17.14 

 

3.9. Model Building 

3.9.0 Automatic Stepwise Selection of Input Variables 

This approach combined the stepwise addition of significant variables (p < 0. 05) in the model, namely 

forward selection, followed by the removal of insignificant variables (p > 0. 05) in the model, namely 

backward elimination (Smith, 2018) and (James et al., 2021). It goes on until the changes in the 

variables, whether inclusion or exclusion, happen in a cyclic manner. Although this method is very 

efficient one of the disadvantages is that it does not examine through all regimes of the variables and 

thus one might miss the global optimum of the predictor set. Rather, it works on local optimization in 

the series of variable adding and removing based on the relevance of each. Selection carried out in the 

last step was directed in such a way that models which model enhance accuracy and minimize 

complexity. 

 

3.9.1 Linear Regression model 

The baseline forecasting approach of river flow in this dissertation employed multiple linear regression 

to estimate and predict the river flow using a set of input predictors derived from the lagged records 

of the flow and rainfall in the tributaries. Multiple linear regression is like simple linear regression, but 

instead of using only one independent variable to predict one variable, the dependent variable that is, 

several independent variables are used (Gambella, Ghaddar and Naoum-Sawaya, 2021). This model 

supposes a linear relationship between the input features which contain flow and rainfall data of the 
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previous days and the output variable that is the river flow on the next day. The relationship can be 

expressed as: 

    𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽௡𝑥௡ + 𝜖 

Y: Dependant variable 

β0: Intercept   

βn:  coefficients associated with each independent variable Xn 

ϵ: error term 

Assumption: 

 Linearity: To confirm the linearity of the relationships between the independent variables; 

flow of the previous days and rainfall and the dependent variable next day flow, the residuals 

versus fitted plot test was employed. 

 Independence: durbin-watson test was used to test for any kind of autocorrelation in the 

residuals. If the value here was close to 2 then the residuals were believed to be independent 

of other observations in the model under test. 

 Homoscedasticity: The Residuals vs. Fitted Plot also helped in conducting the test for 

homoscedasticity. A constant spread of residuals across levels of the independent variables 

suggested that this assumption was satisfied. 

 Normality of Residuals: The normality of each of the residuals was checked by following 

Histogram of Residuals and Q-Q Plot. 

 

3.9.2 Support Vector Regression (SVR) Model 

In this dissertation the use of Support Vector Regression (SVR) was considered as a more complex 

model for river flow forecasting. SVR is an extension of the Support Vector Machines (SVM) 

algorithms that are suited to solve regression problems tasks (Comito and Pizzuti, 2022). This happens 

through finding a hyperplane that optimizes the data, considering a certain tolerance level which is 

determined by the parameter, ϵ; the model aim to minimises errors outside of this tolerance level which 

provide more flexibility in handling non-linear relationships between the variables relationships (Ji et 

al., 2022). 

Key attributes of SVR with major reference to its components are as indicated below. 

 Kernel Function: SVR works in a way of transforming inputs into a higher dimensional space 

through kernel functions to represent non-linear relationship. This includes the linear, 

polynomial and the radial basis function (RBF) kernels. During hyperparameter tuning of this 
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project, several kernels were analysed in a bid to ascertain which kernel is most suitable for the 

river flow forecasting for which RBF was suggested to be the most suitable. 

 Regularization Parameter (C): Determines the trade-off between the goodness of fit to the 

training data and the complexity of the model. An increase in value of C leads to reduced 

training error while it has a disadvantage of overfitting. While performing the hypers parameter 

tuning in this project, several tested C values to get the best performance. 

 Epsilon (ϵ): Erects the range of error which does not attract any penalties for prediction 

wrongs. The lower value of ϵ corresponds to higher possibility of getting a better fit on the data 

while a higher epsilon gives more generalized model. value of epsilon was optimized in such 

a way that it fitted the actual river flow data during the training while preventing the model 

from overfitting. 

 

To diagnose the performance of the SVR model, standard residual diagnostics were used like Residual 

vs Fitted Plot, Histogram of Residuals, actual vs predicted value plot, learning curve, comparison plot 

of actual test value vs predicted value and cross validation. 

 

 

3.9.3. Neural Network Model 

In this dissertation, the predictor of River flows was developed using the multi-layer feedforward 

neural network (known as multi-layer perceptron) to capture the non-linear relationship that prevails 

(Svozil, Kvasnicka and Pospichal, 1997).  

The neural network architecture developed for this project consisted of three layers: 

 Input Layer: The input layer constituted neurons that stood for the chosen input variables that 

were lagged variables of river flow and rainfall. 

 Hidden Layers: They are mainly consisting of two hidden layers with 64 neurons in the first 

layer and 32 neurons in the second layer respectively The ReLU ((Rectified Linear Unit) 

activation function was applied to apply non-linearity. 

 Output Layer: The output layer was comprised a single neuron due to the nature of the 

problem tackled: predicting continuous target measure, namely river flow 

The aimed model was trained with Adam optimizer and mean squared error (MSE) was applied as the 

loss function.  To reduce overfitting, early stopping was used where the training process is interrupted 

the moment that there is no enhancement in the validation loss for the next ten epochs. 
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Feature scaling was performed using MinMaxScaler to ensure that the data used was standardized. 

Techniques such as training and validation loss graphs were used to check convergence and the actual 

test data, and the river flow value was compared with the predicted value for aesthetic analysis. 

 

3.9.4 Generalized Additive Model (GAM) 

The next model used to handle non-linear relationships between inputs and target variable that was 

GAM model. GAM are extended version of linear models in which each input variable can have its 

own smooth, non-linear function (Dubos et al., 2022). The model structure is given by: 

𝑦 = 𝛽଴ + 𝑓ଵ(𝑥ଵ) + 𝑓ଶ(𝑥ଶ) + ⋯ 𝑓௡(𝑥௡) + 𝜖         

where Y is the river flow, fn(Xn) represents the smooth functions applied to the predictor variables, 

and ϵ is the error term. 

The GAM was then fitted using the LinearGAM function within R and a lambda parameter is used to 

adjust the level of smoothing of the penalized splines in the model. In GAM applied in this study, the 

smoothing parameter λ was 2. 0 was used to obtain a better balance between the flexibility of the model 

and its smoothness. A higher λ provides a better fit hence reducing the chances of overfitting while a 

lower λ increases the size of the model hence the chances of overfitting. 

 

Limitation: GAM model provides more flexibility to capture non-linearity, but it assumes that these 

relationships are smooth. This can be limiting when dealing with number of variable datasets, like river 

flow, where abrupt changes may occur. 

 

3.10 Model Evaluation Metrics 

In this dissertation, models performance was evaluated using several key metrics: which are; R-

squared (R²), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean absolute percentage 

error (MAPE). 

 

 R-squared (R²) is the degree of variation in the dependent variable explained by independent 

variables where the greater the value, the better the fit. 

 MSE computes the average squared deviation of the difference between the observed and 

predicted values with better performance indicated by smallest values. 

 MAE that involves the computation of average magnitude of errors in absolute value is less 

volatile than MSE in case of presence of outliers in the model. 
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 MAPE presents errors in terms of percentage hence can be used to compare the model’s 

performance even across different scales. 

 

3.11 Evaluation of SVR using cross-validation method. 

Cross validation techniques where 5-fold cross validation used in this dissertation in a bid to check the 

ability of the Support Vector Regression (SVR) model for generalization. The data set was split into 

five sets of data, the system trained was trained on 4 sets and tested on the 5th set. this process was 

repeated five times, with each fold serving as the test set once. The cross-validation gave out other 

measures like (MSE), (R²) and (MAPE) which gave a more robust assessment of the accuracy of the 

elaborated model. While cross-validation principle has been adopted for the purpose of model 

evaluation, the actual training of the final model was not affected by it. Instead, the model was trained 

on the full dataset after cross-validation to ensure its performance on unseen data. 

 

3.12. Model Optimization and Hyperparameter Tuning 

When choosing the best SVR model, three methods of preprocessing data before entering into the 

model: StandardScaler, RobustScaler, MiniMaxScaler. Among them MinMaxScaler gave better 

solution. This method normalises data to a specified range (between 0 to 1) which benefits the model 

as some kernel functions of SVR such as RBF improve with scaled data. However, StandardScaler and 

RobustScaler could not result in the same level of enhancement on the same data and with the same 

SVR model because of the impact of different scales of features. 

 

Hyperparameter tuning was done by RandomizedSearchCV as opposed to grid search due to the 

exploration of a wider solution space in one search. Random search was chosen due to computational 

complexity since the method does not search for every combination but randomly evaluates them. This 

made it possible to fine-tune the C, epsilon, and gamma values to produce a definite improvement on 

the SVR model when used in next-day river flow prediction. 

 

4. Result and Comparison of Models 

4.1 Split of Data for Training and Testing 

The obtained cleaned dataset was split 70-30 where the 70% was used in model building and fine-

tuning while the 30% was used to evaluate the model on unseen data approach enabled the assessment 

of how well the models generalize as well as the accuracy of the models.  
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4.2 Model Experiment 

The current research used to develop predictive models for river flow predictions using three 

experimental sets. In the first experiment, log-transformed data was used to create models. In the 

second, seasonal influences were removed from the log-transformed data by applying de-

seasonalization, the third experiment used the Box-Cox transformation in an attempt to further 

normalize the data. These configuration setups were aimed to measure the effects of the different 

transformation methods and preprocessing strategies on the models. 

 

4.2.1 Variable selection at Log transformation data  

According to the PACF plots, Catchment Daily Rainfall (CDR) requires 4 lags, and 5 lags are needed 

for Gauged Daily Flow (GDF) in the modelling process. These lagged values were then used in the 

model and the stepwise technique for the selection of the appropriate input variables for building the 

model was applied. The automatic stepwise selection technique identified the following significant 

variables for use in the models: 'gdf_57004_lag_1', 'gdf_57007_lag_2', 'gdf_57006_lag_4', 

'cdr_57004_lag_1', 'gdf_57006_lag_1', 'cdr_57001_lag_2', 'gdf_57006_lag_5', 'cdr_57015_lag_4', 

'cdr_57005_lag_1', 'gdf_57004_lag_2', 'gdf_57007_lag_5', 'gdf_57015_lag_5', 'gdf_57015_lag_1', 

'gdf_57007_lag_1', 'cdr_57005_lag_4', 'gdf_57002_lag_2'. 

 

4.2.1.1 Linear Regression (LR) model at log transformed data 

The AIC of the model is 2371, which is quite acceptable where lower values suggest better results. 

There was no overfitting as seen in both the training and the testing phase with the test set having R-

squared of 0.8827. This result metric is presented in the table below: 

 

Set R-squared MSE MAPE 

Training result 0.84977 0.12885 0.08209 

Testing result 0.88270 0.10052 0.07423 

Cross-

validation 

0.88000 0.10254 0.07305 

 

Cross-validation, using a 5-fold approach, confirmed this consistency, with cross-validated R-squared 

aligning closely with the test set. However, the model does not meet all linear regression assumptions. 

Figures 18.2 and 18.3 reveal deviations from normality in the Q-Q plot and right-skewness in the 
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residuals. The Durbin-Watson statistic (1.94479) suggests independence of residuals is satisfied which 

close to 2.0. 

The residuals vs. fitted plot (Figure:18.2, Page:75) shows an even distribution around zero, affirming 

the linearity assumption. (Figures:18.4-18.5, Page:76) confirm no significant autocorrelation, and the 

comparison of actual vs. predicted values (Figures:18.6-8.7, Page:76) reflects good agreement. 

 

            

  Figure:18.1                        Figure:18.2 

 

 

   Figure:18.3 
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  Figure:18.4     Figure:18.5 

 

          Figure:18.6 

 

     Figure:18.7 
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4.2.1.2 Support Vector regression (SVR) model at log transformed data 

The support vector regression (SVR) model was applied to the log-transformed data to forecast river 

flow. The model used a radial basis function (RBF) kernel with hyperparameters set as follows: C=1.0, 

ϵ=0.1, gamma = scale. These hyperparameters were chosen to balance the trade-off between model 

complexity and error margin, with the RBF kernel capturing non-linear relationships in the data. The 

model exhibited strong performance on both training and test datasets, with no evidence of overfitting. 

R-squared is also slightly better than baseline Linear regression model. Cross-validation (5-fold) 

results further validated the model’s generalizability. The key performance metrics are as follows: 

 

 R-squared MSE MAPE 

Training result 0.87093 0.11070 0.06184 

Testing result 0.88603 0.09766 0.06031 

Cross-

validation 

0.85755 0.12171 0.06662 

 

Although the SVR model demonstrated good performance, the learning curve (Figure:19.1, Page:77) 

shows minor discrepancies between the training and cross-validation errors, suggesting the possibility 

of enhancing the model with more data. The plot of residuals against predicted values (Figure:19.2, 

Page:77) indicates the absence of any discernible patterns, which provides evidence in favour of the 

assumption of linearity. However, the histogram of residuals (Figure:19.3, Page:78) shows a mild right 

skew, Actual test value vs predicted value plot (figure:19.4, Page:78); minor deviations are visible but 

do not significantly affect the overall prediction. As shown in (Figure:19.5-19.6, Page:79) slightly 

better prediction observed as compared to previous LR model. 

       

 Figure:19.1           Figure:19.2 
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    Figure:19.3 

   

    Figure:19.4 
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      Figure:19.5 

 

 

     Figure:19.6 
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4.2.1.3 Neural Network (NN) model at log transformed data 

The neural network (NN) model applied to the log-transformed data yielded strong performance 

metrics. The key performance metrics are as below in table demonstrating good generalization 

 

 R-squared MSE MAPE 

Training result 0.85815 0.12166 0.07603 

Testing result 0.88534 0.09825 0.06872 

 

The learning curve (Figure:20.1, Page:80) shows convergence between training and validation losses, 

indicating no overfitting. The actual vs. predicted plots reveal close alignment between the predicted 

and observed values, further confirmed by the zoomed-in comparison for the 2016-2018 period 

(Figure:20.3, Page:81), showing consistent accuracy in forecasting river flow at gauge 57005. 

 

           Figure:20.1 
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      Figure:20.2 

 

 

      Figure:20.3 
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4.2.1.4 Generalised additive model (GAM) at log transformed data 

The log-transformed data was analysed using the Generalised Additive Model (GAM). The 

performance of the Generalised Additive Model (GAM) can be summarised as follows: 

 

 R-squared MSE MAPE 

Training result 0.87513 0.10710 0.07567 

Testing result 0.87801 0.10454 0.07557 

 

 

These measures demonstrate that the model exhibits comparable performance on both the training and 

test data, suggesting the absence of overfitting. The scatter plot of residuals against predicted values 

(figure 21.1) does not exhibit any discernible trend, indicating that the model effectively captures the 

majority of the information included in the data. The plot (figure:21.2) demonstrates a significant 

connection between the predicted and actual test values, providing additional evidence for the model's 

validity. 

In addition, the histogram of residuals (figure:21.3) verifies that the residuals exhibit a near 

approximation to a normal distribution, albeit with a minor rightward skew. The contrast between the 

actual test data and the predicted data (figures:21.4) illustrates that the model accurately captures the 

underlying trend. (Figure:21.5), which provides a close-up comparison for the years 2016-2018, 

further demonstrates the GAM's ability to accurately estimate the flow throughout this time frame. 

 

 

     Figure:21.1 
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     Figure:21.2 

 

     Figure:21.3 

 

     Figure:21.4 
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     Figure:21.5 

 

4.2.1.5 Model comparison on log transformed data 

The comparison of models on the log-transformed data (Table, Figures:22.1-22.2, Page:85) shows that 

the (SVR) model performed the best, with the lowest MAE (0. 174208) and MAPE (0. 060309). The 

Neural Network (NN) followed with an MAE of 0. 192524 and MAPE of 0. 068723, while Linear 

Regression (LR) showed moderate performance The Generalized Additive Model (GAM) had the 

highest error rates making it the least effective. These results highlight SVR as the most suitable model 

for river flow prediction. 

(Figure:22.3, Page:86) shows a zoomed comparison of actual vs. predicted values for all models over 

2016-2018. The SVR model closely follows the actual values, especially during peak flows, supporting 

the results in Table and Figures:22.1-22.2, where SVR outperformed the other models. 

 

Model MAE MAPE 

LR 0.202526 0.074229 

SVR 0.174208 0.060309 

NN 0.192524 0.068723 

GAM 0.207902 0.075571 
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     Figure:22.1 

 

     Figure:22.2 
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             Figure:22.3 

 

4.2.1.6 Model optimization of SVR model by features scaling and hyperparameter tuning 

It was decided for concentrating on the optimisation of the SVR model was based on its superior 

performance in prior comparisons, where it demonstrates lower MAE and MAPE values compared to 

other models. Consequently, further studies were conducted exclusively on SVR to investigate its 

potential for enhancing next-day flow forecasting. 

 

Three different scaling methods—Standard Scaler, Robust Scaler, and Min-Max Scaler—were tested. 

Among these, the Min-Max Scaler yielded the best improvement in model performance. Result show 

in below table: 

 

SVR Model Comparison After Features Scaling 

 R-squared MSE MAE MAPE 

Standard Scaler 0.88554 0.09808 0.17563 0.06085 

Robust Scaler 0.88516 0.09841 0.17659 0.06113 

Minmax Scaler 0.88596 0.09772 0.17384 0.06023 
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After hyperparameter tuning using the random search technique, the best parameters identified for the 

SVR model were 'C': 52.23487, 'epsilon': 0.01039, 'gamma': 0.26178, and 'kernel': 'rbf'. These 

adjustments improved the model’s performance, reducing MAE to 0.16932 and MAPE to 0.05704.  

(Figure:23.1, Page:23.1) illustrates the closer alignment between predicted and actual test values after 

optimization, reflecting the enhanced accuracy in flow forecasting. 

 

 

     Figure 23.1 

 

 

4.2.2 Variable Selection at Log transformation with de-seasonalized data 

Again, conducted stepwise selection techniques with log transformation followed by de-seasonalised 

data that identified the following significant variables for use in the models: 'gdf_57004_lag_1', 

'gdf_57007_lag_2', 'gdf_57006_lag_4', 'cdr_57004_lag_1', 'gdf_57004_lag_5', 'gdf_57006_lag_1', 

'cdr_57007_lag_2', 'gdf_57006_lag_5', 'cdr_57015_lag_4', 'gdf_57002_lag_1', 'gdf_57004_lag_2', 

'cdr_57005_lag_1', 'gdf_57002_lag_4'. 

 

4.2.2.2 Support Vector regression (SVR) model at log transformed + de-seasonalised data 

When the model was trained on this dataset, the R-squared value improved compared to the previously 

optimized model. However, both MAE and MAPE increased, indicating a rise in the overall average 

prediction error. This suggests that while R-squared showed improvement, the model’s accuracy in 

minimizing average errors was not enhanced through MinMax scaling and hyperparameter tuning 
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when compared to the performance of the log-transformed optimized model. The results are 

summarized in the table below. 

 

SVR model trained at de-seasonalised data 

Followed step for SVR model R-squared MSE MAE MAPE 

1st Attempt 0.89210 0.09174 0.18115 0.06532 

2nd  Minmax scaling 0.89214 0.09170 0.18115 0.06532 

3rd hyperparameter tuning 0.88983 0.09367 0.16788 0.06422 

 

4.2.3 Variable Selection after applied box-cox transformation 

Again, conducted stepwise selection techniques with applied box-cox transformation that identified 

the following significant variables for use in the models: 'gdf_57015_lag_1', 'gdf_57004_lag_1', 

'cdr_57001_lag_2', 'gdf_57007_lag_5', 'gdf_57006_lag_1', 'gdf_57007_lag_2', 'cdr_57004_lag_1', 

'gdf_57007_lag_1', 'gdf_57006_lag_5', 'gdf_57004_lag_4', 'gdf_57015_lag_3', 'gdf_57007_lag_3', 

'gdf_57004_lag_2', 'gdf_57007_lag_4'. 

 

4.2.3.1 Support Vector regression (SVR) model after applied box-cox transformation 

When the model was trained on Box-Cox transformed data, the R-squared value improved compared 

to the previously optimized model. Additionally, both MAE and MAPE decreased, indicating that the 

model better explains the variance while also reducing the average prediction error. In comparison to 

the models trained on log-transformed and de-seasonalized data, the Box-Cox transformed model 

performed better in all aspects, including MAE, MAPE, and R-squared. With the application of Min-

Max scaling and hyperparameter tuning, the model was further optimized using the following 

parameters: 'C': 52.23487, 'epsilon': 0.01039, 'gamma': 0.39610, 'kernel': 'rbf'. The results of this 

comparison are summarized in the accompanying below table. (Figure:24.1, Page:89) provides a 

zoomed-in view of the comparison between the actual test data and predicted values, highlighting the 

model's improved performance. Learning curve shown in (Figure:24.2, Page:89), no sign of overfitting 

at last optimized model. Additionally actual vs predicted plots (figure:24.3, Page:89) evident to better 

generalising model. 
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SVR model trained after applied Box-cox transformation 

Followed step for SVR model R-squared MSE MAE MAPE 

1st Attempt 0.90368 0.01146 0.07820 0.04827 

2nd  Minmax scaling 0.90164 0.01142 0.07877 0.04890 

3rd hyperparameter tuning 0.90889 0.01084 0.05985 0.03510 

 

 

    Figure:24.1 

 

    

  Figure:24.2      Figure:24.3 

 

 



90 
 

 

4.3 Model comparison of all optimized SVR model 

Model trained on SVR model by using random search hyperparameter method by find finding best 

parameters, in which model trained at box-cox transformed data is performed outperforming, 

comparison as shown in below table. 

 

Comparison of Optimized SVR model by Hyperparameter tuning 

Followed step for SVR model MAE MAPE 

Log transformed data 0.16932 0.05704 

De-seasonalized data 0.18014 0.06422 

Box-cox transformed data 0.05985 0.03510 

 

 

4.4 Next Day flow Prediction 

The SVR model trained on Box-Cox transformed data outperformed all other models and was selected 

for next-day river flow forecasting. The predicted flow value for the next day (2018-01-01), where the 

cleaned dataset concluded, was 81.60591 on the original scale. 

 

5. Conclusion 

 

The effectiveness of the SVR model trained on the Box-Cox transformed data in next day river flow 

prediction compared with that of the Linear Regression model. De-seasonalization was least sensitive 

to short term forecasts but Neural Networks were ranking second and could possibly be best tuned by 

adjusting the parameters. combined techniques that affected model performance were the forward and 

backward selection both concerning input variables. Further research should highlight further 

improvements of Neural Networks approximation, effects of the ensemble method, and selection of 

input variables; However, the long-term forecast and impact of environmental changes are promising 

objectives in future studies. 
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